Universität Duisburg-Essen


  1. R. Knörr, W. Lempken and B. Thielcke:
    The S3-conjecture for solvable groups.

  2. H.-G. Rück and H. Stichtenoth:
    On maximal algebraic function fields.
    Published in Journal für die reine und angewandte Mathematik , 457 (1994).

  3. D. W. Hoffmann:
    Isotropy of quadratic forms over the function field of a quadric.

  4. P. H. Tiep:
    Globally irreducible representations of the finite symplectic group Sp4(q).

  5. P. H. Tiep:
    Weil representations as globally irreducible representations.

  6. P. H. Tiep:
    Globally irreducible representations of SL3(q).

  7. P. H. Tiep:
    Basic spin representations of 2Sn and 2 An as globally irreducible representations.

  8. D. W. Hoffmann and J. Van Geel:
    Minimal forms with respect to function fields of conics.

  9. A. N. Parshin:
    Higher Bruhat-Tits buildings and vector bundles on an algebraic surface.

  10. H.W. Gollan and G.O. Michler:
    Construction of a 45694-dimensional simple module of Lyons' sporadic group over GF(2).

  11. A.J. Han Vinck (Ed.):
    Proceedings of the 4th Benelux-Japan Workshop on Coding and Information Theory, Eindhoven, The Netherlands, June 22-24, 1994. ISBN 90-74249-04-3

  12. A. J. Han Vinck and O. Hooijen (Eds.):
    Proceedings of the Workshop on Communication over Powerlines, Essen, Germany, May 25, 1994. ISBN 90-74249-05-1

  13. H.-G. Rück:
    Theta series of imaginary quadratic function fields.

  14. D.J. Green:
    The 3-local cohomology of the Mathieu group M24.

  15. P. Fleischmann and W. Lempken:
    The finite groups with regular actions on vector spaces.
    Expanded version with P. H. Tiep in preparation.

  16. I. Kiming:
    On certain problems in the analytical arithmetic of quadratic forms arising from the theory of curves of genus 2 with elliptic differentials.
    To appear soon in Manuscripta Mathematica.

  17. G. Frey:
    On elliptic curves with isomorphic torsion structures and corresponding curves of genus 2.

  18. A.-M. Spallek:
    Kurven vom Geschlecht 2 und ihre Anwendung in Public-Key-Kryptosystemen.

  19. Q.V. Pham:
    Der Abelsche Morphismus für semi-stabile arithmetische Kurven vom Geschlecht 2.

  20. C. Paar:
    Effiziente VLSI-Architekturen für bit-parallele Arithmetik in endlichen Körpern.

  21. R. Staszewski and M. Weller:
    Solving non-sparse Systems of Linear Equations over Finite Fields on the CM-5.

 


Stand 21.10.95